import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' from paddlex import transforms as T import paddlex as pdx # 定义训练和验证时的transforms # API说明https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/cls_transforms.html # train_transforms = T.Compose( # [T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()]) train_transforms = T.Compose( [T.Resize(target_size=224), T.Normalize()] ) eval_transforms = T.Compose([ T.Resize(target_size=224), T.Normalize() ]) # 定义训练和验证所用的数据集 # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-imagenet train_dataset = pdx.datasets.ImageNet( data_dir='/home/xiongweixp/data/handwriting/train', file_list='/home/xiongweixp/data/handwriting/train/train_list.txt', label_list='/home/xiongweixp/data/handwriting/train/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.ImageNet( data_dir='/home/xiongweixp/data/handwriting/train', file_list='/home/xiongweixp/data/handwriting/train/val_list.txt', label_list='/home/xiongweixp/data/handwriting/train/labels.txt', transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html # model = pdx.cls.MobileNetV2(num_classes=len(train_dataset.labels)) model = pdx.cls.MobileNetV3_small(num_classes=len(train_dataset.labels)) # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/classification.html#train # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html model.train( num_epochs=10, train_dataset=train_dataset, train_batch_size=64, eval_dataset=eval_dataset, lr_decay_epochs=[4, 6, 8], learning_rate=0.025, save_dir='output/mobilenetv3_small', use_vdl=True #resume_checkpoint='output/resnet/epoch_9' )