12345678910111213141516171819202122232425262728293031323334353637 |
- import paddlex as pdx
- from PIL import Image
-
- def transparence2white(img):
- # img=img.convert('RGBA') # 此步骤是将图像转为灰度(RGBA表示4x8位像素,带透明度掩模的真彩色;CMYK为4x8位像素,分色等),可以省略
- sp=img.size
- width=sp[0]
- height=sp[1]
- print(sp)
- for yh in range(height):
- for xw in range(width):
- dot=(xw,yh)
- color_d=img.getpixel(dot) # 与cv2不同的是,这里需要用getpixel方法来获取维度数据
- if(color_d[3]==0):
- color_d=(255,255,255,255)
- img.putpixel(dot,color_d) # 赋值的方法是通过putpixel
- return img
-
- handwriting_jpg = 'data/test/test_deal.png';
- img=Image.open('data/test/test.png')
- img=transparence2white(img) # 将图片传入,改变背景色后,返回
- img=img.resize((64,64))
- img.save(handwriting_jpg) # 保存图片
- test1_jpg = 'data/test/test1.png'
- test2_jpg = 'data/test/test2.png'
- test3_jpg = 'data/test/test3.jpg'
- # model = pdx.load_model('output/mobilenetv3/export')
- model = pdx.load_model('output/resnet/export')
- result = model.predict(handwriting_jpg,topk=8)
- print("Predict Result: ", result)
- result2 = model.predict(test2_jpg, topk=3)
- print("Predict Result: ", result2)
- result3 = model.predict(test3_jpg, topk=3)
- print("Predict Result: ", result3)
|